Advertisements
Advertisements
प्रश्न
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
उत्तर
We have I = `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` .....(1)
= `int_2^8 sqrt(10 - (10 - x))/(sqrt(10 - x) + sqrt(10 - (10 - x)) "d"x` .....By (P3)
⇒ I = `int_2^8 sqrt(x)/(sqrt(10 - x) + sqrt(x)) "d"x` ....(2)
Adding (1) and (2), we get
2I = `int_2^8 1"d"x = 8 - ` = 6
Hence I = 3
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Find `dy/dx, if y = cos^-1 ( sin 5x)`
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?
`int_-9^9 x^3/(4 - x^2)` dx = ______
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_{pi/6}^{pi/3} sin^2x dx` = ______
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
The value of `int_0^(π/4) (sin 2x)dx` is ______.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Evaluate the following limit :
`lim_("x"->3)[sqrt("x"+6)/"x"]`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following definite intergral:
`int_1^3logx dx`