हिंदी

Evaluate ∫12x3-x+x dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`

योग

उत्तर

Let I = `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`  ......(i)

= `int_1^2 (sqrt(1 + 2 - x))/(sqrt(3 - (1 + 2 - x)) + sqrt(1 + 2 - x))  "d"x`    ......`[because int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x]`

∴ I = `int_1^2 (sqrt(3 - x))/(sqrt(x) + sqrt(3 - x))  "d"x`   ......(ii)

Adding (i) and (ii), we get

2I = `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x + int_1^2 (sqrt(3 - x))/(sqrt(x) + sqrt(3 - x))  "d"x`

= `int_1^2 (sqrt(x) + sqrt(3 - x))/(sqrt(x) + sqrt(3 - x))  "d"x`

= `int_1^2 1* "d"x`

= `[x]_1^2`

∴ 2I = 2 – 1 = 1

∴ I = `1/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.6: Definite Integration - Q.4

संबंधित प्रश्न

Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))  dx` = ______.


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


`int_0^{pi/2} log(tanx)dx` = ______


`int_0^1 (1 - x)^5`dx = ______.


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_0^1 x tan^-1x  dx` = ______ 


`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_0^pi x sin^2x dx` = ______ 


`int_(-1)^1 (x + x^3)/(9 - x^2)  "d"x` = ______.


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))  dx` is


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


The integral `int_0^2||x - 1| -x|dx` is equal to ______.


If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


Evaluate `int_-1^1 |x^4 - x|dx`.


Evaluate the following definite integral:

`int_4^9 1/sqrt"x" "dx"`


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×