हिंदी

Prove that ∫ b a f ( x ) d x = ∫ b a f ( a + b − x ) d x and hence evaluate ∫ π 3 π 6 d x 1 + √ tan x . - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   

योग

उत्तर

`int _a^b f(x) dx = int_a^b f (a + b -x ) dx`

Taking L.H.S 

`int _a^b f (x) dx `              ..... ( i )

Let t = a + b - x 

x = a + b - t 

`(dx)/(dt) = 0 + 0 - 1`

⇒ dx = - dt 

changing limits

at x = a  t = a + b - a = b 

x = b  t = a + b - b = a

so integral (i) becomes

` int _b^a f (a + b - t )(- dt )`

using `int_a^b f(x) dx = - int_b^a f (x) dx `

⇒ `int_a^b f ( a + b  -t ) dt`

changing variable

`int _a^b f ( a + b -x ) dx `

L.H.S = R.H.S
Hence proved. 

`I = int _(pi/6)^(pi/3) 1/(1 +sqrt(tan x ))  dx`

`I = int _(pi/6)^(pi/3) sqrt(cos x )/(sqrt(cos x ) + sin x )  dx`        ......( i )

using property

`I = int _(pi/6)^(pi/3) (sqrt(cos (pi/6 + pi/3 -x)))/(cos sqrt(pi/6 + pi/3 - x) +  sqrt(sin (pi/6 + pi/3 - x ))` dx

`I = int _(pi/6)^(pi/3) sqrt(sin x ) /(sqrt (sin x ) + sqrt (cos x) ) dx `         ....... ( ii ) 

Adding (i) & (ii) 

`2I = int _(pi/6)^(pi/3) sqrt(cos x ) /(sqrt(cos x ) + sqrt( sin x ) )  dx  + int_(pi/6)^(pi/3) sqrt( sin x) /( sqrt( sin x ) + sqrt( cos x ) ) dx `

`2I = int _(pi/6)^(pi/3) (sqrt(cos x ) + sqrt( sin x )) /( sqrt ( cos x ) + sqrt( sin x )) dx `

`2I = int _(pi/6)^(pi/3) dx`

`2I = int _(pi/6)^(pi/3) x`

`2I = pi / 3 -  pi / 6 `

`2I = pi /6 `

` I = pi / 12 `

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 65/3/3

संबंधित प्रश्न

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi log(1+ cos x) dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


`int_0^1 "e"^(2x) "d"x` = ______


`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?


The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.


`int_2^3 x/(x^2 - 1)` dx = ______


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_{pi/6}^{pi/3} sin^2x dx` = ______ 


`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______ 


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:


Evaluate: `int_(-1)^3 |x^3 - x|dx`


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0

⇒ `1/4 (square - square)` = 0

⇒ b4 – `square` = 0

⇒ (b2 – a2)(`square` + `square`) = 0

⇒ b2 – `square` = 0 as a2 + b2 ≠ 0

⇒ b = ± `square`


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×