Advertisements
Advertisements
प्रश्न
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
उत्तर
`int _a^b f(x) dx = int_a^b f (a + b -x ) dx`
Taking L.H.S
`int _a^b f (x) dx ` ..... ( i )
Let t = a + b - x
x = a + b - t
`(dx)/(dt) = 0 + 0 - 1`
⇒ dx = - dt
changing limits
at x = a t = a + b - a = b
x = b t = a + b - b = a
so integral (i) becomes
` int _b^a f (a + b - t )(- dt )`
using `int_a^b f(x) dx = - int_b^a f (x) dx `
⇒ `int_a^b f ( a + b -t ) dt`
changing variable
`int _a^b f ( a + b -x ) dx `
L.H.S = R.H.S
Hence proved.
`I = int _(pi/6)^(pi/3) 1/(1 +sqrt(tan x )) dx`
`I = int _(pi/6)^(pi/3) sqrt(cos x )/(sqrt(cos x ) + sin x ) dx` ......( i )
using property
`I = int _(pi/6)^(pi/3) (sqrt(cos (pi/6 + pi/3 -x)))/(cos sqrt(pi/6 + pi/3 - x) + sqrt(sin (pi/6 + pi/3 - x ))` dx
`I = int _(pi/6)^(pi/3) sqrt(sin x ) /(sqrt (sin x ) + sqrt (cos x) ) dx ` ....... ( ii )
Adding (i) & (ii)
`2I = int _(pi/6)^(pi/3) sqrt(cos x ) /(sqrt(cos x ) + sqrt( sin x ) ) dx + int_(pi/6)^(pi/3) sqrt( sin x) /( sqrt( sin x ) + sqrt( cos x ) ) dx `
`2I = int _(pi/6)^(pi/3) (sqrt(cos x ) + sqrt( sin x )) /( sqrt ( cos x ) + sqrt( sin x )) dx `
`2I = int _(pi/6)^(pi/3) dx`
`2I = int _(pi/6)^(pi/3) x`
`2I = pi / 3 - pi / 6 `
`2I = pi /6 `
` I = pi / 12 `
APPEARS IN
संबंधित प्रश्न
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
`int_0^1 "e"^(2x) "d"x` = ______
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_2^3 x/(x^2 - 1)` dx = ______
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_{pi/6}^{pi/3} sin^2x dx` = ______
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
Evaluate: `int_(-1)^3 |x^3 - x|dx`
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`