Advertisements
Advertisements
प्रश्न
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
विकल्प
`7/2`
`5/2`
7
2
उत्तर
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))` dx` = bbunderline(5/2)`
Explanation:
Let
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))` dx
Using the substitution u = 9 − x, we find that the integral transforms to
`int_2^7 sqrt(9 - x)/(sqrt(x) + sqrt(9 - x))` dx
Adding these two expressions gives
2I = `int_2^7 1 dx`
2I = 7 − 2
2I = 5
∴ I = `5/2`
APPEARS IN
संबंधित प्रश्न
Evaluate : `intlogx/(1+logx)^2dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate`int (1)/(x(3+log x))dx`
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
`int_0^2 e^x dx` = ______.
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
`int_2^4 x/(x^2 + 1) "d"x` = ______
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_-9^9 x^3/(4 - x^2)` dx = ______
`int_0^1 x tan^-1x dx` = ______
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_-1^1x^2/(1+x^2) dx=` ______.
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
Which of the following is true?
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.
If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`