Advertisements
Advertisements
प्रश्न
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
उत्तर
To prove: `int_0^a "f"("x") "dx" = int_0^a "f" ("a - x") "dx"`
Proof: Let t = a - x
⇒ dt = - dx
When x = 0, t = a
When x = a , t = 0
Putting the value of x in LHS
`int_a^0 "f"("a - t") (- "dt")`
= `- int_a^0 "f" ("a - t") ("dt")`
= `int_0^a "f" ("a - t") ("dt")`
= `int_0^a ("a - x") ("dx") ...(∵ int_a^b "f" (t) "dt" = int_a^b ("x")( "dx"))`
= RHS
Using this we can solve the given question as follows:
`I = int_0^pi f ("x") d"x" = int_0^pi (pi - "x") "dx"`
⇒ `2I = int_0^pi f ("x") d"x" + int_0^pi f (pi - "x") d"x" = int_0^pi ("x" sin "x")/(1 + cos^2 "x") d"x" + int_0^pi ((pi - "x") sin(pi - "x"))/(1 + cos^2 (pi - "x")) d"x"`
⇒`2"I" = int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx" + int_0^pi ((pi - "x")sin"x")/(1 + cos^2 (pi - "x")) "dx"`
⇒ `2"I" = int_0^pi (pi sin"x")/(1 + cos^2 "x") "dx"`
Let, cos x = t ⇒ -sin x dx = dt
⇒ `2"I" = -int_1^-1 (pi)/(1 + t^2) dt = -pi [ tan^-1 t ]_1^(-1) = -pi(-pi/(4) - pi/(4)) = pi^2/(2)`
∴ `"I" = pi^2/(4)`
संबंधित प्रश्न
Evaluate : `intsec^nxtanxdx`
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
Evaluate`int (1)/(x(3+log x))dx`
Evaluate = `int (tan x)/(sec x + tan x)` . dx
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_-9^9 x^3/(4 - x^2)` dx = ______
`int_0^{pi/2} xsinx dx` = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:
`int (dx)/(e^x + e^(-x))` is equal to ______.
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`