Advertisements
Advertisements
प्रश्न
Evaluate`int (1)/(x(3+log x))dx`
उत्तर
`int (1)/(x(3+log x))dx`
Put `3+log x=t`
`1/x dx=dt`
∴ `int dt/t+c`
`int dt/(3 +t)`
= `log [3 + t] + c
= `log (3+log x)+c`
APPEARS IN
संबंधित प्रश्न
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
Evaluate : `intlogx/(1+logx)^2dx`
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_2^3 x/(x^2 - 1)` dx = ______
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
`int_0^pi x*sin x*cos^4x "d"x` = ______.
`int_0^1 "e"^(5logx) "d"x` = ______.
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
Evaluate: `int_(-1)^3 |x^3 - x|dx`
If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate: `int_-1^1 x^17.cos^4x dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`