Advertisements
Advertisements
प्रश्न
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
विकल्प
`int_"a"^"b" "f"(x - "c")"d"x`
`int_"a"^"b" "f"(x + "c")"d"x`
`int_"a"^"b" "f"(x)"d"x`
`int_("a" - "c")^("b" - "c") "f"(x)"d"x`
उत्तर
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to `int_"a"^"b" "f"(x + "c")"d"x`.
Explanation:
Since by putting x = t + c, we get
I = `int_"a"^"b" "f"("c" + "t")"dt"`
= `int_"a"^"b" "f"(x + "c")"d"x`.
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
`int_0^{pi/2} xsinx dx` = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^1 x tan^-1x dx` = ______
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
`int (dx)/(e^x + e^(-x))` is equal to ______.
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.
`int_0^1|3x - 1|dx` equals ______.
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
`int_-9^9 x^3/(4-x^2) dx` =______
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate:
`int_0^1 |2x + 1|dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`