हिंदी

Bcacfd∫a+cb+cf(x)dx is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.

विकल्प

  • `int_"a"^"b" "f"(x - "c")"d"x`

  • `int_"a"^"b" "f"(x + "c")"d"x`

  • `int_"a"^"b" "f"(x)"d"x`

  • `int_("a" - "c")^("b" - "c") "f"(x)"d"x`

MCQ
रिक्त स्थान भरें

उत्तर

`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to `int_"a"^"b" "f"(x + "c")"d"x`.

Explanation:

Since by putting x = t + c, we get

I = `int_"a"^"b" "f"("c" + "t")"dt"`

= `int_"a"^"b" "f"(x + "c")"d"x`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Solved Examples [पृष्ठ १६०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Solved Examples | Q 23 | पृष्ठ १६०

संबंधित प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


`int_0^{pi/2} xsinx dx` = ______


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_0^1 x tan^-1x  dx` = ______ 


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


`int (dx)/(e^x + e^(-x))` is equal to ______.


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.


The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.


`int_0^1|3x - 1|dx` equals ______.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Evaluate:

`int_0^1 |2x + 1|dx`


Solve the following.

`int_0^1 e^(x^2) x^3dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×