Advertisements
Advertisements
प्रश्न
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
उत्तर
let I = `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
Put x2 = t. to find constants A and B.
`"t"/("t"^2 + 5"t" + 6) = "t"/(("t" + 2)("t" + 3))`
`= "A"/("t" + 2) + "B"/"t + 3"`
∴ t = A (t + 3) + B (t + 2)
Putting t = -3 in equation (II).
-3 = B ( -1 ) ⇒ B = 3
Putting t = -2 in equation (II).
-2 = A (1) ⇒ A = -2
Substituting the values of A and replacing t by x2 in equation (I). we get
`"x"^2/("x"^4 + "5x"^2 + 6) = - 2/("x"^3 + 2) + 3/("x"^2 + 3)`
`therefore "I" = int [(-2)/("x"^2 + 2) + 3/("x"^2 + 3)] "dx"`
`= (-2) int "dx"/ ("x"^2 + 2) + 3 int "dx"/("x"^2 + 3)`
`= (-2) xx 1/sqrt2 "tan"^-1 ("x"/sqrt 2) + 3 xx 1/sqrt 3 "tan"^-1 ("x"/sqrt 3) + "c"`
`= -sqrt 2 "tan"^-1 ("x"/sqrt2) + sqrt 3 "tan"^-1 ("x"/sqrt 3) + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
`int_"a"^"b" "f"(x) "d"x` = ______
Evaluate `int_0^1 x(1 - x)^5 "d"x`
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_-9^9 x^3/(4 - x^2)` dx = ______
`int_{pi/6}^{pi/3} sin^2x dx` = ______
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
`int (dx)/(e^x + e^(-x))` is equal to ______.
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
`int_0^1 1/(2x + 5) dx` = ______.
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Solve the following.
`int_0^1e^(x^2)x^3 dx`