हिंदी

Evaluate : ∫logx/(1+logx)^2dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

उत्तर


Problem:

`intlogx/(1+logx)^2dx`
adding and substracting 1 from numerator

`int (1-1+logx)/(1+logx)^2dx`

`int (1+logx)/(1+logx)^2dx-int(1)/(1+logx)^2 dx`

`int 1/(1+logx)dx-int(1)/(1+logx)^2 dx`
For the integral

` int 1/(1+logx)dx`
integrate by parts within the sum: ∫fg'=fg−∫f'g

`f= 1/(1+logx)dx, g'=1`

`f'=-(1)/(1+logx)^2, g=x`

`=-int(1)/(1+logx)^2 dx-int -1/(1+logx)^2dx+x/(log(x)+1)`

`=x/(log(x)+1)`

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (October)

APPEARS IN

संबंधित प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


`int_0^2 e^x dx` = ______.


`int_"a"^"b" "f"(x)  "d"x` = ______


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______ 


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_0^9 1/(1 + sqrtx)` dx = ______ 


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


`int_a^b f(x)dx` = ______.


`int_4^9 1/sqrt(x)dx` = ______.


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.


If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is ______.


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


`int_1^2 x logx  dx`= ______


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×