Advertisements
Advertisements
प्रश्न
Evaluate : `intlogx/(1+logx)^2dx`
उत्तर
Problem:
`intlogx/(1+logx)^2dx`
adding and substracting 1 from numerator
`int (1-1+logx)/(1+logx)^2dx`
`int (1+logx)/(1+logx)^2dx-int(1)/(1+logx)^2 dx`
`int 1/(1+logx)dx-int(1)/(1+logx)^2 dx`
For the integral
` int 1/(1+logx)dx`
integrate by parts within the sum: ∫fg'=fg−∫f'g
`f= 1/(1+logx)dx, g'=1`
`f'=-(1)/(1+logx)^2, g=x`
`=-int(1)/(1+logx)^2 dx-int -1/(1+logx)^2dx+x/(log(x)+1)`
`=x/(log(x)+1)`
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
`int_0^2 e^x dx` = ______.
`int_"a"^"b" "f"(x) "d"x` = ______
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_0^9 1/(1 + sqrtx)` dx = ______
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
`int_a^b f(x)dx` = ______.
`int_4^9 1/sqrt(x)dx` = ______.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
`int_1^2 x logx dx`= ______
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`