हिंदी

Evaluate: ∫13x+5x+5+9-xdx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`

योग

उत्तर

I = `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`  ...(1)

Replace, f(x) by f(a + b – x) and x by (4 – x)

I = `int_1^3 sqrt(4 - x + 5)/(sqrt(9 - x) + sqrt(x + 5))dx`

= `int_1^3 sqrt(9 - x)/(sqrt(9 - x) + sqrt(x + 5))dx`  ...(2)

Adding equation (i) and (ii)

2I = `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx+int_1^3 sqrt(9 - x)/(sqrt(9 - x) + sqrt(x + 5))dx`

= `int_1^3(sqrt(x+5)+sqrt(9-x))/(sqrt(x+5)+sqrt(9-x)).dx`

= `int_1^31dx=[x]_1^3`

2I = 3 - 1

2I = 2 

I = 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Official

APPEARS IN

संबंधित प्रश्न

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


`int_1^2 1/(2x + 3)  dx` = ______


`int_2^4 x/(x^2 + 1)  "d"x` = ______


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


`int_0^{pi/2} log(tanx)dx` = ______


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_2^3 x/(x^2 - 1)` dx = ______


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


`int_0^{pi/2} cos^2x  dx` = ______ 


`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


`int_(-1)^1 (x + x^3)/(9 - x^2)  "d"x` = ______.


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


`int_(-2)^2 |x cos pix| "d"x` is equal to ______.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


Evaluate:

`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`


`int_0^1 1/(2x + 5) dx` = ______.


If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0

⇒ `1/4 (square - square)` = 0

⇒ b4 – `square` = 0

⇒ (b2 – a2)(`square` + `square`) = 0

⇒ b2 – `square` = 0 as a2 + b2 ≠ 0

⇒ b = ± `square`


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


Evaluate: `int_0^π 1/(5 + 4 cos x)dx`


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×