मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Evaluate: ∫13x+5x+5+9-xdx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`

बेरीज

उत्तर

I = `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`  ...(1)

Replace, f(x) by f(a + b – x) and x by (4 – x)

I = `int_1^3 sqrt(4 - x + 5)/(sqrt(9 - x) + sqrt(x + 5))dx`

= `int_1^3 sqrt(9 - x)/(sqrt(9 - x) + sqrt(x + 5))dx`  ...(2)

Adding equation (i) and (ii)

2I = `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx+int_1^3 sqrt(9 - x)/(sqrt(9 - x) + sqrt(x + 5))dx`

= `int_1^3(sqrt(x+5)+sqrt(9-x))/(sqrt(x+5)+sqrt(9-x)).dx`

= `int_1^31dx=[x]_1^3`

2I = 3 - 1

2I = 2 

I = 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Official

APPEARS IN

संबंधित प्रश्‍न

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_0^2 e^x dx` = ______.


`int_1^2 1/(2x + 3)  dx` = ______


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.


`int_2^3 x/(x^2 - 1)` dx = ______


`int_-9^9 x^3/(4 - x^2)` dx = ______


f(x) =  `{:{(x^3/k;       0 ≤ x ≤ 2), (0;     "otherwise"):}` is a p.d.f. of X. The value of k is ______


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:


Evaluate:

`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`


The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))  dx` is


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


`int_a^b f(x)dx` = ______.


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate: `int_0^π x/(1 + sinx)dx`.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate:

`int_0^sqrt(2)[x^2]dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite integral:

`int_-2^3(1)/(x + 5)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×