Advertisements
Advertisements
प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
उत्तर
`I = int_0^(pi/2) (sin x - cosx)/(1+sinx cos x) dx` ....(i)
`I = int_0^(pi/2) (sin (pi/2-x)-cos(pi/2-x))/(1 + sin(pi/2-x)cos(pi/2-x))dx`
`I = int_0^(pi/2) (cosx-sinx)/(1+cosxsinx)dx` .....(ii)
Adding (i) and (ii), we get :
`2 I = int_0^(pi/2) ((sin x - cos x)/ (1 + sin x cos x) + (cos x - sin x)/ (1 + sin x cos x)) dx`
`2I = int_0^(pi/2)(sinx-cosx+ cosx - sinx)/(1 +sinxcosx) dx`
`2I = 0 ⇒I=0`
`⇒ int_0^(pi/2) (sinx-cosx)/(1+sinxcosx) dx=0`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
Evaluate : `intlogx/(1+logx)^2dx`
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
Evaluate `int_1^3 x^2*log x "d"x`
By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x`.
Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x` ......(i)
Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`, we get
I = `int_2^5 ("( )")/(sqrt(7 - x) + "( )") "d"x` ......(ii)
Adding equations (i) and (ii), we get
2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x)) "d"x + ( ) "d"x`
2I = `int_2^5 (("( )" + "( )")/("( )" + "( )")) "d"x`
2I = `square`
∴ I = `square`
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_0^{pi/2} cos^2x dx` = ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
`int_0^pi x*sin x*cos^4x "d"x` = ______.
`int_0^9 1/(1 + sqrtx)` dx = ______
`int_0^1 "e"^(5logx) "d"x` = ______.
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
Evaluate: `int_(-1)^3 |x^3 - x|dx`
`int_0^1 1/(2x + 5) dx` = ______.
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
`int_0^1|3x - 1|dx` equals ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Evaluate the following limit :
`lim_("x"->3)[sqrt("x"+6)/"x"]`
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2)dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_1^3logx dx`