English

By using the properties of the definite integral, evaluate the integral: ∫0π2sinx-cosx1+sinxcosxdx - Mathematics

Advertisements
Advertisements

Question

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`

Sum

Solution

`I = int_0^(pi/2) (sin x - cosx)/(1+sinx cos x) dx`     ....(i)

`I = int_0^(pi/2) (sin (pi/2-x)-cos(pi/2-x))/(1 + sin(pi/2-x)cos(pi/2-x))dx`

`I = int_0^(pi/2) (cosx-sinx)/(1+cosxsinx)dx`    .....(ii)

Adding (i) and (ii), we get :

`2 I = int_0^(pi/2) ((sin x - cos x)/ (1 + sin x cos x) + (cos x - sin x)/ (1 + sin x cos x))  dx`

`2I = int_0^(pi/2)(sinx-cosx+ cosx - sinx)/(1 +sinxcosx)    dx`

`2I = 0 ⇒I=0`

`⇒ int_0^(pi/2) (sinx-cosx)/(1+sinxcosx)  dx=0`  

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.11 [Page 347]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.11 | Q 15 | Page 347

RELATED QUESTIONS

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi log(1+ cos x) dx`


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate :  ∫ log (1 + x2) dx


Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


`int_"a"^"b" "f"(x)  "d"x` = ______


`int_0^1 "e"^(2x) "d"x` = ______


Evaluate `int_1^3 x^2*log x  "d"x`


`int_0^{pi/2} log(tanx)dx` = ______


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


`int_{pi/6}^{pi/3} sin^2x dx` = ______ 


`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______ 


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


`int_-1^1x^2/(1+x^2)  dx=` ______.


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:


`int (dx)/(e^x + e^(-x))` is equal to ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


`int_a^b f(x)dx` = ______.


`int_4^9 1/sqrt(x)dx` = ______.


If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.


Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate the following limit :

`lim_("x"->3)[sqrt("x"+6)/"x"]`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


`int_1^2 x logx  dx`= ______


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×