Advertisements
Advertisements
Question
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
Solution
We can redefine f as f(x) = `{{:(2 - x",", "if" - 1 < x ≤ 0),(x + 2",", "if" 0 < ≤ 1),(3x",", "if" 1 < x ≤ 2):}`
Therefore, `int_(-1)^2 "f"(x)"d"x = int_(-1)^0 (2 - x)"d"x + int_0^1 (x + 2)"d"x + int_1^2 3x"d"x` ....(By P2)
= `(2x = x^2/2)_(-1)^0 + (x^2/2 + 2x)_0^1 + ((3x^2)/2)_1^2`
= `0 - (-2 - 1/2) + (1/2 + 2) + 3(4/2 - 1/2)`
= `5/2 + 5/2 + 9/2`
= `19/2`.
APPEARS IN
RELATED QUESTIONS
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_(-5)^5 | x + 2| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
`int_1^2 1/(2x + 3) dx` = ______
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_2^3 x/(x^2 - 1)` dx = ______
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
`int (dx)/(e^x + e^(-x))` is equal to ______.
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
`int_a^b f(x)dx` = ______.
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`