English

Find d∫01x(tan-1x) dx - Mathematics

Advertisements
Advertisements

Question

Find `int_0^1 x(tan^-1x)  "d"x`

Sum

Solution

I = `int_0^1x(tan^-1x)^2  "d"x`

Integrating by parts, we have

I = `x^2/2[(tan^-1x)^2]_0^1 - 1/2 int_0^1 x^2 * 2 (tan^-1x)/(1 + x^2)  "d"x`

= `pi^2/32 - int_0^1  x^2/(1 + x) * tan^-1  x"d"x`

= `pi^2/32 - 1_1`, where I1 = `int_0^1 x^2/(1 + x^2) tan^-1 x"d"x`

Now I1 = `int_0^1 (x^2 + 1 - 1)/(1 + x^2) tan^-1x "d"x`

= `int_0^1 tan^-1 x"d"x - int_0^1 1/(1 + x^2) tan^-1 x"d"x`

= `"I"_2 - 1/2 ((tan^-1x)^2)_0^1`

= `"I"_2 - pi^2/32`

Here I2 = `int_0^1 tan^-1 x"d"x = (x tan^-1x)_0^1 - int_0^1 x/(1 + x^2)  "d"x`

= `pi/4 - 1/2(log|1 + x^2|)_0^1`

= `pi/4 - 1/2 log2`

Thus I2 = `pi/4 - 1/2 log 2 - pi^2/32`

Therefore, I = `pi^2/32 - pi/4 + 1/2 log2 + pi^2/32`

= `pi^2/16 - pi/4 + 1/2 log2`

= `(pi^2 - 4pi)/16 + log sqrt(2)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Solved Examples [Page 156]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Solved Examples | Q 18 | Page 156

RELATED QUESTIONS

If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


Integrate the function in `e^x (1/x - 1/x^2)`.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following : `int cos sqrt(x).dx`


Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


Solution of the equation `xdy/dx=y log y` is ______


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Evaluate:

`int e^(ax)*cos(bx + c)dx`


Evaluate:

`inte^x sinx  dx`


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


Evaluate `int (1 + x + x^2/(2!))dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×