Advertisements
Advertisements
Question
`int_"a"^"b" "f"(x) "d"x` = ______
Options
`int_"b"^"a" "f"(x) "d"x`
`- int_"a"^"b" "f"(x) "d"x`
`- int_"b"^"a" "f"(x) "d"x`
`int_0^"a" "f"(x) "d"x`
Solution
`- int_"b"^"a" "f"(x) "d"x`
RELATED QUESTIONS
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate : ∫ log (1 + x2) dx
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_0^2 e^x dx` = ______.
`int_0^1 "e"^(2x) "d"x` = ______
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
`int_0^{pi/2} cos^2x dx` = ______
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_0^pi x sin^2x dx` = ______
`int_0^9 1/(1 + sqrtx)` dx = ______
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
Evaluate: `int_(-1)^3 |x^3 - x|dx`
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
Evaluate `int_-1^1 |x^4 - x|dx`.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
Solve the following.
`int_1^3 x^2 logx dx`
`int_1^2 x logx dx`= ______
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`