Advertisements
Advertisements
Question
Solution
\[ = \sqrt{2} \int_\pi^\frac{3\pi}{2} \left| \sin x \right|dx\]
\[ = - \sqrt{2} \int_\pi^\frac{3\pi}{2} \sin x\ dx .................\left( \sin x < 0 for\ \pi \leq x \leq 2\pi \right)\]
\[= - \sqrt{2}\left( - \cos x \right) |_\pi^\frac{3\pi}{2} \]
\[ = \sqrt{2}\left( \cos\frac{3\pi}{2} - cos\pi \right)\]
\[ = \sqrt{2} \left[ 0 - \left( - 1 \right) \right]\]
\[ = \sqrt{2} \times 1\]
\[ = \sqrt{2}\]
APPEARS IN
RELATED QUESTIONS
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate = `int (tan x)/(sec x + tan x)` . dx
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
Evaluate `int_1^3 x^2*log x "d"x`
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
`int_0^1|3x - 1|dx` equals ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
Solve the following.
`int_1^3 x^2 logx dx`
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`