Advertisements
Advertisements
Question
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Solution
\[\text{We have}, \]
\[ \int_0^a 3 x^2 d x = 8\]
\[ \Rightarrow \left[ 3 \frac{x^3}{3} \right]_0^a = 8\]
\[ \Rightarrow a^3 = 8\]
\[ \Rightarrow a = 2\]
APPEARS IN
RELATED QUESTIONS
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
`int_0^1 "e"^(2x) "d"x` = ______
`int_0^1 (1 - x)^5`dx = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_-1^1x^2/(1+x^2) dx=` ______.
`int_0^9 1/(1 + sqrtx)` dx = ______
Which of the following is true?
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
`int_0^1|3x - 1|dx` equals ______.
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
Evaluate: `int_0^π x/(1 + sinx)dx`.
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`