Advertisements
Advertisements
Question
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
Solution
Let `"I" = int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"` ...(i)
⇒ `"I" = int_0^pi ((pi-"x")sin(pi-"x"))/(1+3cos^2(pi-"x"))d"x"`
= `int_0^pi (pisin"x")/(1+3cos^2"x")d"x" - int_0^pi (xsin"x")/(1+3cos^2"x")d"x"` ...(ii)
Adding (i) & (ii), we have
we get: `2"I" = int_0^pi(pisin"x")/(1+3 cos^2 "x")` dx
Put cos x = t
⇒ - sin x dx = dt, when x = 0
⇒ t = 1, for x = π ⇒ t = - 1
So, `2I = π int_1^-1 dt/(1 + 3t^2)`
⇒ `π/3 int_-1^1 (dt)/((1/sqrt3)^2 + (t)^2)`
⇒ `π/3 xx sqrt3 [tan^-1(sqrt3t)]_-1^1`
⇒ `(sqrt3π)/3 [ tan^-1sqrt3 - ( - tan^-1 sqrt3)]`
I = `(sqrt3π)/3. π/3 = sqrt3π^2/9`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
`int_0^1 "e"^(2x) "d"x` = ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^1 log(1/x - 1) "dx"` = ______.
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
`int_4^9 1/sqrt(x)dx` = ______.
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
`int_0^1|3x - 1|dx` equals ______.
If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.
If f(x) = `{{:(x^2",", "where" 0 ≤ x < 1),(sqrt(x)",", "when" 1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.
`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`