हिंदी

Evaluate the following: dxab∫0π2 dx(a2cos2x+b2sin2x)2 (Hint: Divide Numerator and Denominator by cos4x) - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)

योग

उत्तर

Let I = `int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` 

Dividing the numerator and denominator by cos4x, we have

I = `int_0^(pi/2)  (sec^4x)/(("a"^2 cos^2x)/(cos^2x) + ("b"^2 sin^2x)/cos^2x)^2 "d"x`

= `int_0^(pi/2)  (sec^2x * sec^2x)/("a"^2 + "b"^2 tan^2 x)^2  "d"x`

= `int_0^(pi/2) ((1 + tan^2x) sec^2x)/("a"^2 + "b"^2 tan^2 x)^2 "d"x`

Put tan x = t

⇒ sec2x dx = dt

Changing the limits, we get

When x = 0

t = tan 0 = 0

When x = `pi/2`

t = `tan  pi/2 = oo`

∴ I = `int_0^oo (1 + "t"^2)/("a"^2 + "b"^2"t"^2)^2 "dt"`

Put t2 = u only for the purpose of partial fraction

∴ `(1 +"u")/("a"^2 + "b"^2"u")^2 = "A"/(("a"^2 + "b"^2"u")) + "B"/("a"^2 + "b"^2"u")^2`

1 + u = A(a2 + b2u) + B

Comparing the coefficients of like terms, we get

a2A + B = 1 and b2A = 1

⇒ A = `1/"b"^2`

Now `"a"^2 * 1/"b"^2 + "B"` = 1

⇒ B = `1 - "a"^2/"b"^2`

= `("b"^2 - "a"^2)/"b"^2`

∴ I = `int_0^oo  (1 + "t"^2)/("a"^2 + "b"^2"t"^2)^2`

= `1/"b"^2 int_0^oo  "dt"/("a"^2 + "b"^2"t"^2) + ("b"^2 - "a"^2)/"b"^2  int_0^oo  "dt"/("a"^2 + "b"^2"t"^2)^2`

= `1/"b"^2 int_0^oo  "dt"/("b"^2("a"^2/"b"^2 + "t"^2)) + ("b"^2 - "a"^2)/"b"^2  int_0^oo  "dt"/("a"^2 + "b"^2"t"^2)^2`

= `1/"ab"^3 [tan^-1  "t"/("a"/"b")]_0^oo + ("b"^2 - "a"^2)/"b"^2 (pi/4 * 1/("a"^3"b"))`

= `1/"ab"^3 [tan^-1  oo - tan 0] + ("b"^2 - "a"^2)/"b"^2 (pi/(4"a"^3"b"))`

= `1/"ab"^3 * pi/2 + pi/4 * ("b"^2 - "a"^2)/("a"^2"b"^3)`

= `pi/(2"ab"^3) + pi/4 * ("b"^2 - "a"^2)/("a"^3"b"^3)`

= `pi [(2"a"^2 + "b"^2 - "a"^2)/(4"a"^3"b"^3)]`

= `pi/4 (("a"^2 + "b"^2)/("a"^3"b"^3))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 44 | पृष्ठ १६६

संबंधित प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


Evaluate = `int (tan x)/(sec x + tan x)` . dx


Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^{pi/2} log(tanx)dx` = ______


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


`int_0^9 1/(1 + sqrtx)` dx = ______ 


`int_0^1 "e"^(5logx) "d"x` = ______.


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is ______.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


Evaluate the following definite integral:

`int_4^9 1/sqrt"x" "dx"`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×