मराठी

Show that ∫0π2sin2xsinx+cosx=12log(2+1) - Mathematics

Advertisements
Advertisements

प्रश्न

Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`

बेरीज

उत्तर

We have I = `int_0^(pi/2) (sin^2x)/(sinx + cosx)  "d"x`

= `int_0^(pi/2) (sin^2(pi/2 - x))/(sin(pi/2 - x) + cos(pi/2 - x)) "d"x`  ....(By P4)

⇒ I = `int_0^(pi/2) (cos^2x)/(sinx + cosx) "d"x`

Thus, we get 2I = `1/sqrt(2)  int_0^(pi/2)  ("d"x)/(cos(x - pi/4))`

= `1/sqrt(2) int_0^(pi/2) sec(x - pi/2) "d"x`

= `1/sqrt(2) [log(sec(x - pi/4) + tan(x - pi/4))]_0^(pi/2)`

= `1/sqrt(2)[log(sec  pi/4 + tan  pi/4) - log sec(- pi/4) + tan(- pi/4)]`

= `1/sqrt(2) [log(sqrt(2) + 1) - log(sqrt(2) - 1)]`

= `1/sqrt(2) log|(sqrt(2) + 1)/(sqrt(2) - 1)|`

= `1/sqrt(2) log((sqrt(2) - 1)^2/1)`

= `2/sqrt(2) log(sqrt(2) + 1)`

Hence I = `1/sqrt(2) log(sqrt(2) + 1)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Solved Examples [पृष्ठ १५५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Solved Examples | Q 17 | पृष्ठ १५५

संबंधित प्रश्‍न

By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Evaluate :  ∫ log (1 + x2) dx


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


`int_2^4 x/(x^2 + 1)  "d"x` = ______


Evaluate `int_1^3 x^2*log x  "d"x`


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


f(x) =  `{:{(x^3/k;       0 ≤ x ≤ 2), (0;     "otherwise"):}` is a p.d.f. of X. The value of k is ______


`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______ 


`int_-1^1x^2/(1+x^2)  dx=` ______.


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


`int_0^1 1/(2x + 5) dx` = ______.


The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.


The integral `int_0^2||x - 1| -x|dx` is equal to ______.


If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.


If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.


Evaluate: `int_0^π 1/(5 + 4 cos x)dx`


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


Evaluate `int_-1^1 |x^4 - x|dx`.


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×