मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Evaluate ∫13x2⋅logx dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate `int_1^3 x^2*log x  "d"x`

बेरीज

उत्तर

Let I = `int_1^3 x^2*log x  "d"x`

= `[log x int x^2  "d"x]_1^3 - int_1^3["d"/("d"x)(log x) intx^2  "d"x]"d"x`

= `[log x* x^3/3]_1^3 - int_1^3 1/x*x^3/3  "d"x`

= `[9log3 - log1*1/3] - 1/3 int_1^3 x^2  "d"x`

= `(9log 3 - 0) - 1/3 [x^3/3]_1^3`

= `9log3 - 1/3(27/3 - 1/3)`

= `9log3 - 1/3(26/3)`

∴ I = `9log 3 - 26/9`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.6: Definite Integration - Q.5

संबंधित प्रश्‍न

 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^(2x) cos^5 xdx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi log(1+ cos x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


`int_2^3 x/(x^2 - 1)` dx = ______


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_0^pi x sin^2x dx` = ______ 


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:


The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))  dx` is


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0

⇒ `1/4 (square - square)` = 0

⇒ b4 – `square` = 0

⇒ (b2 – a2)(`square` + `square`) = 0

⇒ b2 – `square` = 0 as a2 + b2 ≠ 0

⇒ b = ± `square`


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


`int_0^1|3x - 1|dx` equals ______.


If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate `int_1^2(x+3)/(x(x+2))  dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×