मराठी

By using the properties of the definite integral, evaluate the integral: ∫01x(1-x)ndx - Mathematics

Advertisements
Advertisements

प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`

बेरीज

उत्तर

`int_0^1  (1 - x) [1 - (1 - x)^n] dx        ...[because int_0^a  f(x) dx = int_0^a  f(a - x)  dx]`

Hence,  `I = int_0^1 (1 - x).x^n  dx`

`I = int_0^1  (x^n - x^(n + 1))  dx`

`= ([x^(n + 1)]_0^1)/(n + 1) - ([n^(n + 2)]_0^1)/(n + 2)`

`= 1/(n + 2) - 1/(n + 2)`

`= (n + 2 - n - 1)/((n + 1)(n + 2))`

`= 1/((n + 1)(n + 2))`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.11 [पृष्ठ ३४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.11 | Q 7 | पृष्ठ ३४७

संबंधित प्रश्‍न

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`


By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


Evaluate`int (1)/(x(3+log x))dx` 


Evaluate = `int (tan x)/(sec x + tan x)` . dx


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


`int_0^1 "e"^(2x) "d"x` = ______


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


`int_0^{pi/2} log(tanx)dx` = ______


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_0^1 x tan^-1x  dx` = ______ 


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


`int_4^9 1/sqrt(x)dx` = ______.


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is ______.


`int_1^2 x logx  dx`= ______


Evaluate `int_1^2(x+3)/(x(x+2))  dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate:

`int_0^sqrt(2)[x^2]dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×