Advertisements
Advertisements
प्रश्न
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
उत्तर
`int_(-a)^asqrt((a-x)/(a+x)) dx`
Let `I=int_(-a)^asqrt((a-x)/(a+x)) dx`
`=int_(-a)^asqrt(((a-x)(a-x))/((a+x)(a-x))) dx`
`=int_(-a)^a (a-x)/sqrt(a^2-x^2) dx`
`=int_(-a)^a a/sqrt(a^2-x^2) dx-int_(-a)^a x/sqrt(a^2-x^2) dx`
[but `a/sqrt(a^2-x^2)` is an is an even function and `x/sqrt(a^2-x^2)` is an odd function]
`=2a.[sin^-1(x/a)]_0^a`
`=2a.[sin^-1 1-sin^-1 0]`
`=2a[pi/2-0]`
`int_(-a)^asqrt((a-x)/(a+x)).dx=pia`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_1^2 1/(2x + 3) dx` = ______
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
Evaluate `int_1^3 x^2*log x "d"x`
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^pi x sin^2x dx` = ______
Which of the following is true?
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
Evaluate: `int_(-1)^3 |x^3 - x|dx`
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`