मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate: int_(-a)^asqrt((a-x)/(a+x)) dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`

उत्तर

`int_(-a)^asqrt((a-x)/(a+x)) dx`

Let `I=int_(-a)^asqrt((a-x)/(a+x)) dx`

`=int_(-a)^asqrt(((a-x)(a-x))/((a+x)(a-x))) dx`

`=int_(-a)^a (a-x)/sqrt(a^2-x^2) dx`

`=int_(-a)^a a/sqrt(a^2-x^2) dx-int_(-a)^a x/sqrt(a^2-x^2) dx`

[but `a/sqrt(a^2-x^2)` is an is an even function and `x/sqrt(a^2-x^2)` is an odd function]

`=2a.[sin^-1(x/a)]_0^a`

`=2a.[sin^-1 1-sin^-1 0]`

`=2a[pi/2-0]`

`int_(-a)^asqrt((a-x)/(a+x)).dx=pia`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March)

APPEARS IN

संबंधित प्रश्‍न

 
 

Evaluate `int_(-2)^2x^2/(1+5^x)dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_1^2 1/(2x + 3)  dx` = ______


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


Evaluate `int_1^3 x^2*log x  "d"x`


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______ 


If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_0^pi x sin^2x dx` = ______ 


Which of the following is true?


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


`int_(-2)^2 |x cos pix| "d"x` is equal to ______.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


Evaluate: `int_(-1)^3 |x^3 - x|dx`


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is ______.


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×