मराठी

Evaluate: π∫02π11+esinxdx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx

बेरीज

उत्तर

Let I = `int_0^(2π) (1)/(1 + e^(sin x)`dx   ...(i)

Applying property,

`int_0^af(x)dx = int_0^af(a-x)dx,` we get

I = `int_0^(2pi) dx/(1+e^(sin(2pi-x)))`

= `int_0^(2pi)dx/(1+e^(-sinx))`

= `int_0^(2pi)dx/(1+1/e^(sinx))`

= `int_0^(2pi)(e^(sinx)dx)/(e^(sinx)+1)`   ...(ii)

On adding equations (i) and (ii), we get

2I = `int_0^(2pi)dx/(1+e^(sinx))+int_0^(2pi)(e^(sinx)dx)/(1+e^(sinx))`

= `int_0^(2pi)((1+e^(sinx))/(1+e^(sinx)))dx`

= `int_0^(2pi)1.dx`

⇒ 2I = `[x]_0^(2pi)`

⇒ 2I = [2π]

⇒ I = π

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (April) Term 2 - Outside Delhi Set 1

संबंधित प्रश्‍न

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


`int_0^2 e^x dx` = ______.


Evaluate `int_1^3 x^2*log x  "d"x`


Evaluate `int_0^1 x(1 - x)^5  "d"x`


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


f(x) =  `{:{(x^3/k;       0 ≤ x ≤ 2), (0;     "otherwise"):}` is a p.d.f. of X. The value of k is ______


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


`int_(-2)^2 |x cos pix| "d"x` is equal to ______.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


`int_0^1 1/(2x + 5) dx` = ______.


`int_a^b f(x)dx` = ______.


If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


The integral `int_0^2||x - 1| -x|dx` is equal to ______.


Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


Evaluate: `int_0^π 1/(5 + 4 cos x)dx`


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate the following limit :

`lim_("x"->3)[sqrt("x"+6)/"x"]`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×