Advertisements
Advertisements
प्रश्न
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
उत्तर
`I = int_0^(pi/2) cos^2 x/(1 + sinxcosx)dx` ....(1)
Using `int_0^a f(x) dx = int_0^a f(a -x) dx`
`I = int_0^(pi/2) (cos^2 (pi/2 - x))/(1 + sin(pi/2 -x)cos(pi/2 -x)) dx`
`= int_0^(pi/2) (sin^2 x)/(1+cos x.sin x) dx` .....(2)
Adding eq. (1) & (2)
`2I = int_0^(pi/2) (cos^2x + sin^2 x)/(1+sin xcos x) dx`
`= int_0^(pi/2) 1/(1+sinxcos x) dx``
`= int_0^(pi/2) (sec^2x) /(sec^2x + tan x) dx`
`2I = int_0^(pi/2) (sec^2 x dx)/(1+tan^2 x + tan x)`
Put `tan x = t, sec^2xdx = dt`
when x = 0, t = 0
when `s = pi/2, t = oo`
`2I = int_0^(oo) (dt)/(t^2 + 2t. 1/2+1/4 1/4 + 1)`
`= int_0^(oo) (dt)/((t+1/2)^2 + ((sqrt3)/2)^2`
`= 1/(sqrt3/2) [tan^(-1) ((t+1/2)/(sqrt3/2))]_0^oo`
`= 2/sqrt3 tan^(-1) [(2t + 1)/sqrt3]_0^oo`
`2I = 2/sqrt3 [pi/2 - pi/6]`
`I = 1/sqrt3[(3pi - pi)/6]`
` = 1/sqrt3 [(2pi)/6] = pi/(3sqrt3)`
APPEARS IN
संबंधित प्रश्न
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
Evaluate`int (1)/(x(3+log x))dx`
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x`.
Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x` ......(i)
Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`, we get
I = `int_2^5 ("( )")/(sqrt(7 - x) + "( )") "d"x` ......(ii)
Adding equations (i) and (ii), we get
2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x)) "d"x + ( ) "d"x`
2I = `int_2^5 (("( )" + "( )")/("( )" + "( )")) "d"x`
2I = `square`
∴ I = `square`
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_0^pi x*sin x*cos^4x "d"x` = ______.
`int_0^1 "e"^(5logx) "d"x` = ______.
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Evaluate: `int_0^π x/(1 + sinx)dx`.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Solve.
`int_0^1e^(x^2)x^3dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`