मराठी

Evaluate `Int_0^(Pi/2) Cos^2x/(1+ Sinx Cosx) Dx` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`

उत्तर

`I = int_0^(pi/2) cos^2 x/(1 + sinxcosx)dx`   ....(1)

Using `int_0^a f(x) dx = int_0^a f(a -x) dx`

`I  = int_0^(pi/2) (cos^2 (pi/2 - x))/(1 + sin(pi/2 -x)cos(pi/2 -x)) dx`

`= int_0^(pi/2) (sin^2 x)/(1+cos x.sin x) dx`  .....(2)

Adding eq. (1) & (2)

`2I = int_0^(pi/2) (cos^2x + sin^2 x)/(1+sin xcos x) dx`

`= int_0^(pi/2) 1/(1+sinxcos x) dx``

`= int_0^(pi/2) (sec^2x) /(sec^2x + tan x) dx`

`2I = int_0^(pi/2) (sec^2 x dx)/(1+tan^2 x + tan x)`

Put `tan x = t, sec^2xdx = dt`

when x = 0, t = 0

when `s = pi/2, t = oo`

`2I = int_0^(oo) (dt)/(t^2 + 2t. 1/2+1/4 1/4 + 1)`

`= int_0^(oo)  (dt)/((t+1/2)^2 + ((sqrt3)/2)^2`

`= 1/(sqrt3/2) [tan^(-1) ((t+1/2)/(sqrt3/2))]_0^oo`

`= 2/sqrt3 tan^(-1) [(2t + 1)/sqrt3]_0^oo`

`2I = 2/sqrt3 [pi/2 - pi/6]`

`I = 1/sqrt3[(3pi - pi)/6]`

` = 1/sqrt3 [(2pi)/6] = pi/(3sqrt3)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2017-2018 (March) Set 1

संबंधित प्रश्‍न

Evaluate : `intsec^nxtanxdx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


Evaluate`int (1)/(x(3+log x))dx` 


Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))  dx` = ______.


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______ 


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


`int_0^1 "e"^(5logx) "d"x` = ______.


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


The integral `int_0^2||x - 1| -x|dx` is equal to ______.


The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.


Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


Evaluate: `int_0^π x/(1 + sinx)dx`.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×