मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

∫abf(x)dx=∫abf(x-a-b)dx. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is False.

Explanation:

`int_b^a f(x)dx = int_b^a f(a + b - x)dx`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2024-2025 (March) Model set 2 by shaalaa.com

संबंधित प्रश्‍न

Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Evaluate = `int (tan x)/(sec x + tan x)` . dx


Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_"a"^"b" "f"(x)  "d"x` = ______


`int_1^2 1/(2x + 3)  dx` = ______


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


Evaluate `int_1^3 x^2*log x  "d"x`


Evaluate `int_0^1 x(1 - x)^5  "d"x`


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______ 


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_0^{pi/2} cos^2x  dx` = ______ 


`int_0^1 x tan^-1x  dx` = ______ 


`int_{pi/6}^{pi/3} sin^2x dx` = ______ 


`int_0^9 1/(1 + sqrtx)` dx = ______ 


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))  dx` is


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


Evaluate: `int_(-1)^3 |x^3 - x|dx`


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


Evaluate `int_-1^1 |x^4 - x|dx`.


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


Evaluate the following definite integral:

`int_1^3 log x  dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×