मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

if ∫(3x^2+2x+1)dx=14, then α - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2

उत्तर

(B) 2

`int_0^alpha (3x^2+2x+1)dx=14`

`[x^3+x^2+x]_0^alpha=14`

`alpha^3+alpha^2+alpha-14=0`

`(alpha-2)(alpha^2+3alpha+7)=0`

But `alpha^2+3alpha+7=0` does not have real roots

`alpha=2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (July)

APPEARS IN

संबंधित प्रश्‍न

 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

Evaluate : `intsec^nxtanxdx`


Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


`int_0^2 e^x dx` = ______.


`int_1^2 1/(2x + 3)  dx` = ______


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


Evaluate `int_0^1 x(1 - x)^5  "d"x`


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_2^3 x/(x^2 - 1)` dx = ______


`int_0^{pi/2} xsinx dx` = ______


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


`int_0^1 log(1/x - 1) "dx"` = ______.


Which of the following is true?


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))  dx` is


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


Evaluate the following limit :

`lim_("x"->3)[sqrt("x"+6)/"x"]`


Evaluate `int_1^2(x+3)/(x(x+2))  dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Evaluate:

`int_0^sqrt(2)[x^2]dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×