Advertisements
Advertisements
प्रश्न
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
उत्तर
Let `I = int (sqrt tan x)/(sinx cos x)` dx
`= int sqrt tan x/(sin x/ cos x * cos ^2) dx`
`= int sqrt tanx/tan x * sec^2 x dx`
`I = int (tan x)^((-1)/2)* sec^2 x dx`
Put tan x = t
sec2 x dx = dt
Hence, `I = int t^((-1)/2)dt = (t ^(1/2 + 1))/(1/2 + 1) + C`
`= 2 t^(1/2) + C`
`= 2 sqrt(tan x) + C`
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of\[\int \log_e x\ dx\].
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Evaluate `int 1/("x" ("x" - 1))` dx
`int x/(x + 2) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int dx/(1 + e^-x)` = ______
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int (cos x)/(1 - sin x) "dx" =` ______.
Evaluate `int1/(x(x - 1))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate `int(1+x+(x^2)/(2!))dx`