Advertisements
Advertisements
प्रश्न
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
पर्याय
True
False
उत्तर
False
APPEARS IN
संबंधित प्रश्न
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate: `int "e"^sqrt"x"` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
`int secx/(secx - tanx)dx` equals ______.
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).