Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int \frac{\cos x}{\sin x \cdot \log \sin x}dx\]
\[ \Rightarrow \int \frac{\cot x}{\log \sin x}dx\]
\[\text{ Let log sin x} = t\]
\[ \Rightarrow \text{ cot x dx} = dt\]
\[ \therefore I = \int \frac{dt}{t}\]
\[ = \text{ log t + C}\]
\[ = \text{ log}\left( \text{ log sin x} \right) + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Solve: dy/dx = cos(x + y)
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
`int sqrt(1 + "x"^2) "dx"` =
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate `int 1/((2"x" + 3))` dx
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int ("d"x)/(x(x^4 + 1))` = ______.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
The value of `intsinx/(sinx - cosx)dx` equals ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate `int (1)/(x(x - 1))dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`