मराठी

Evaluate : ∫(√cotx+√tanx)dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`

उत्तर

`I=int(sqrt(cotx)+sqrt(tanx))dx`

`=int(sqrt(tanx)(1+cotx))dx`

`Let tanx=t^2`

Differentiating both sides w.r.t. x, we get

`sec^2 x dx=2t dt`

`=> dx=(2tdt)/(1+t^4)`

`therefore I=intt(1+1/t^2)xx(2t)/(1+t^4)dt`

`=2int(t^2+1)/(t^4+1)dt`

`=2int(1+1/t^2)/(t^2+1/t^2)dt`

`=2int(1+1/t^2)/((t-1/t)^2+2)dt`

`Let (t−1)/t=y`

`=>(1+1/t^2)dt=dy`

`therefore I=2int 1/(y^2+(sqrt2)^2) dy`

`=2xx1/sqrt2 tan^-1(y/sqrt2)+C`

`=sqrt2 tan^-1 (t-1/t)/sqrt2+C`

`=sqrt2 tan^-1 ((t^2-1)/(sqrt2t))+C`

`=sqrt2 tan^-1((tanx-1)/sqrt(2tanx))+C`

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Patna Set 2

संबंधित प्रश्‍न

Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Solve: dy/dx = cos(x + y)


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

The value of \[\int\frac{1}{x + x \log x} dx\] is


 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


`int cos^3x  dx` = ______.


`int (logx)^2/x dx` = ______.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate:

`int sqrt((a - x)/x) dx`


`int x^2/sqrt(1 - x^6)dx` = ______.


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×