Advertisements
Advertisements
प्रश्न
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
उत्तर
x2dy = (2xy + y2)dx
`=>dy/dx=(2xy+y^2)/x^2.......(i)`
Let y=vx,
`dy/dx=v+xdv/dx`
Substituting in (i), we get
`v+x (dv)/dx=(2vx^2+v^2x^2)/x^2`
`=>v+x (dv)/dx=2v+v^2`
`=>x (dv)/dx=v^2+v`
`=>(dv)/(v^2+v)=dx/x`
integrating both sides
`=>int(dv)/(v^2+v)=intdx/x`
`=>(v+1-v)/(v(v+1))dv=intdx/x`
`=>logv-log|v+1|=logx+logC`
`=>log|v/(v+1)|=log|Cx|`
`=>log|(y/x)/(y/x+1)|=log|Cx|`
`=>y/(y+x)=Cx` [Removing logarithm in both sides]
`therefore y=Cxy+Cx^2` ,which is the general solution.
Putting y=1 and x=1,
`1=C + C`
`=>2C=1`
`=>c=1/2y`
`=(xy)/2+x^2/2`
`therefore 2y=xy+x^2,` which is the particular solution.
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int ("d"x)/(x(x^4 + 1))` = ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`int sin^3x cos^3x dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`