मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following: ∫125-9x2⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int (1)/(25 - 9x^2)*dx`

मूल्यांकन

उत्तर

I = `int (1)/(25 - 9x^2)*dx`

= `int(1)/(5^2 - (3x)^2)*dx`

= `(1)/(2(5))log |(5 + 3x)/(5 - 3x)|*(1)/(3) + c`

= `(1)/(30)log |(5 + 3x)/(5 - 3x)| + c`

Alternative Method:

`int (1)/(25 - 9x^2)*dx`

= `(1)/(9) int (1)/((25)/(9)x^2)*dx`

= `(1)/(9) int (1)/((5/3)^2 - x^2)*dx`

= `(1)/(9) xx (1)/(2 xx 5/3)log|(5/3 + x)/(5 / 3 - x)|+ c`

= `(1)/(30)log|(5 + 3x)/(5 - 3x)| + c`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (B) | Q 1.02 | पृष्ठ १२३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`(1+ log x)^2/x`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


`int (dx)/(sin^2 x cos^2 x)` equals:


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{x - x^2} dx\]

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of\[\int \log_e x\ dx\].

 


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `int sin x/cos^2x dx`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int sin 4x cos 3x dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Evaluate `int (5"x" + 1)^(4/9)` dx


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int (cos2x)/(sin^2x)  "d"x`


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


Evaluate `int(3x^2 - 5)^2  "d"x`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int1/(4 + 3cos^2x)dx` = ______ 


The value of `intsinx/(sinx - cosx)dx` equals ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int 1/(sinx.cos^2x)dx` = ______.


`int cos^3x  dx` = ______.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int(1 + x + x^2/(2!))dx`


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2+4x-5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×