Advertisements
Advertisements
प्रश्न
Integrate the functions:
`sqrt(ax + b)`
उत्तर
Let `I = int sqrt(ax + b) dx`
Put ax + b = t
a dx = dt
`=> dx = 1/a dt`
Hence, `I = int 1/a sqrtt dt`
`= 1/a int t^(1/2) dt`
`= 1/a . 2/3 t^(3/2) + C`
`= 2/(3a) (ax + b)^(3/2) + C`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`1/(1 - tan x)`
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Evaluate the following integrals : tan2x dx
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int x/(x + 2) "d"x`
`int x^3"e"^(x^2) "d"x`
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int 1/(sinx.cos^2x)dx` = ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Evaluate `int(1 + x + x^2/(2!))dx`
`int x^3 e^(x^2) dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`