Advertisements
Advertisements
प्रश्न
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
पर्याय
True
False
उत्तर
False
Explanation:
Let I = `int "x" * "e"^"2x"` dx
`= "x" int "e"^"2x" * "dx" - int ["d"/"dx" ("x") int "e"^"2x" * "dx"]` dx
`= "x" * "e"^"2x"/2 - int 1 * "e"^"2x"/2 * "dx"`
`= "x"/2 "e"^"2x" - 1/2 int "e"^"2x" +` c
`= "x"/2 "e"^"2x" - 1/2 * "e"^"2x"/2` + c
`= "e"^"2x" ("x"/2 - 1/4)` + c
`= "e"^"2x" (("2x" - 1)/4)` + c
∴ f(x) = `(2"x" - 1)/4`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate: `int "x" * "e"^"2x"` dx
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int(log(logx))/x "d"x`
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int "cosec"^4x dx` = ______.
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int1/(x(x-1))dx`