Advertisements
Advertisements
प्रश्न
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
पर्याय
True
False
उत्तर
True
संबंधित प्रश्न
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int sqrt(1 + sin2x) "d"x`
`int(log(logx))/x "d"x`
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
`int secx/(secx - tanx)dx` equals ______.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`intsqrt(sec x/2 - 1)dx`