English

Write a Value of ∫ Tan 6 X Sec 2 X D X - Mathematics

Advertisements
Advertisements

Question

Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .
Sum

Solution

Let I= \[\int\] tan6 x . sec2 x dx

Let tan x = t
sec2 x dx = dt
\[\therefore I =\]\[\int\] t6 . dt

\[= \frac{t^7}{7} + C\]
\[ = \frac{\tan^7 x}{7} + C \left( \because t = \tan x \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Very Short Answers [Page 197]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Very Short Answers | Q 6 | Page 197

RELATED QUESTIONS

Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

sec2(7 – 4x)


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Integrate the functions:

cot x log sin x


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`(1+ log x)^2/x`


\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×