Advertisements
Advertisements
Question
Write a value of
Solution
Let I= \[\int\] tan6 x . sec2 x dx
sec2 x dx = dt
\[= \frac{t^7}{7} + C\]
\[ = \frac{\tan^7 x}{7} + C \left( \because t = \tan x \right)\]
APPEARS IN
RELATED QUESTIONS
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
cot x log sin x
Integrate the functions:
`1/(1 + cot x)`
Integrate the functions:
`(1+ log x)^2/x`
Write a value of
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`