Advertisements
Advertisements
Question
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Solution
`int x^2(1 - 2/x)^2 dx`
= `int x^2 (1 - 4/x + 4/x^2)dx`
= `int (x^2 - 4x + 4)dx`
= `intx^2 dx - 4 int x dx + 4 int 1 dx`
= `x^3/(3) - 4(x^2/2) + 4x + c`
= `(1)/(3)x^3 - 2x^2 + 4x + c`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
`(1+ log x)^2/x`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of
Write a value of
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
The value of \[\int\frac{1}{x + x \log x} dx\] is
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int "x" * "e"^"2x"` dx
Evaluate: `int log ("x"^2 + "x")` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int logx/x "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int x^x (1 + logx) "d"x`
`int(5x + 2)/(3x - 4) dx` = ______
`int (cos x)/(1 - sin x) "dx" =` ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int 1/(sinx.cos^2x)dx` = ______.
`int cos^3x dx` = ______.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int 1/(x(x-1))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`