English

Integrate the following w.r.t. x : ∫x2(1-2x)2dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`

Sum

Solution

`int x^2(1 - 2/x)^2 dx`

= `int x^2 (1 - 4/x + 4/x^2)dx`

= `int (x^2 - 4x + 4)dx`

= `intx^2 dx - 4 int x dx + 4 int 1 dx`

= `x^3/(3) - 4(x^2/2) + 4x + c`

= `(1)/(3)x^3 - 2x^2 + 4x + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.1 [Page 102]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Integrate the functions:

`(1+ log x)^2/x`


Integrate the functions:

`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`


Evaluate : `∫1/(3+2sinx+cosx)dx`


\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


The value of \[\int\frac{1}{x + x \log x} dx\] is


Integrate the following w.r.t. x : x3 + x2 – x + 1


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Fill in the Blank.

`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: `int "x" * "e"^"2x"` dx


Evaluate: `int log ("x"^2 + "x")` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int logx/x  "d"x`


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int x^x (1 + logx)  "d"x`


`int(5x + 2)/(3x - 4) dx` = ______


`int (cos x)/(1 - sin x) "dx" =` ______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


`int 1/(sinx.cos^2x)dx` = ______.


`int cos^3x  dx` = ______.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int 1/(x(x-1))dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×