मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Choose the correct options from the given alternatives : ∫cos2x-1cos2x+1⋅dx = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =

पर्याय

  • tan x – x + c

  • x + tan x + c

  • x – tan x + c

  • – x – cot x + c

MCQ

उत्तर

x – tan x + c

[ Hint : `int (cos2x - 1)/(cos2x + 1)*dx`

= `int (-(1 - cos2x))/(1 + cos^2x)*dx`

= `int (-2sin^2x)/(2cos^2x)*dx`

= `int (sec^2x - 1)*dx`

= – tan x + x + c.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Miscellaneous Exercise 3 [पृष्ठ १५०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 1.19 | पृष्ठ १५०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find : `int(x+3)sqrt(3-4x-x^2dx)`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

sin (ax + b) cos (ax + b)


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

`1/(1 - tan x)`


\[\int\sqrt{x - x^2} dx\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

\[\int x \sin^3 x\ dx\]

Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : tan5x


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


State whether the following statement is True or False.

If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: `int log ("x"^2 + "x")` dx


`int 1/(cos x - sin x)` dx = _______________


`int x^2/sqrt(1 - x^6)` dx = ________________


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int x^x (1 + logx)  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int(log(logx) + 1/(logx)^2)dx` = ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate `int (1)/(x(x - 1))dx`


Evaluate:

`int sqrt((a - x)/x) dx`


`int "cosec"^4x  dx` = ______.


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Evaluate `int1/(x(x - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×