Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
उत्तर
Let I = `int(1)/(sqrt(x) + sqrt(x^3)).dx`
= `int(1)/(x^(1/2)+ x^(3/2)).dx`
Put x = t2
∴ dx = 2t dt
Also `x^(1/2) = (t^2)^(1/2)` = t
and
`x^(3/2) = (t^2)^(3/2)` = t3
∴ I = `int (2tdt)/(t + t^3)`
= `2int "tdt"/(t(1 + t^2)`
= `2int (1)/(1 + t^2)dt`
= 2tan–1 t+ c
= `2tan^-1(sqrt(x)) + c`.
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
cot x log sin x
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int 1/(xsin^2(logx)) "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int x^3"e"^(x^2) "d"x`
`int(5x + 2)/(3x - 4) dx` = ______
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
Write `int cotx dx`.
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`