Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
उत्तर
`int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
= `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)) xx (sqrt(7x - 2) + sqrt(7x - 5))/(sqrt(7x - 2) + sqrt(7x - 5)).dx`
= `int (3(sqrt(7x - 2) + sqrt(7x - 5)))/((7x - 2) - (7x - 5)).dx`
= `int (sqrt(7x - 2) + sqrt(7x - 5)).dx`
= `int(7x - 2)^(1/2) .dx + int(7x - 5)^(1/2).dx`
= `((7x - 2)^(3/2))/(3/2) xx (1)/(7) + ((7x - 5)^(3/2))/(3/2) xx (1)/(7) + c`
= `(2)/(21)(7x - 2)^(3/2) + (2)/(21)(7x - 5)^(3/2) + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int (cos2x)/(sin^2x) "d"x`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int dx/(1 + e^-x)` = ______
`int (cos x)/(1 - sin x) "dx" =` ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int 1/(sinx.cos^2x)dx` = ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2 + 4x-5)dx`