हिंदी

Evaluate the following integrals : ∫37x-2-7x-5.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`

योग

उत्तर

`int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`

= `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)) xx  (sqrt(7x - 2) + sqrt(7x - 5))/(sqrt(7x - 2) + sqrt(7x - 5)).dx`

= `int (3(sqrt(7x - 2) + sqrt(7x - 5)))/((7x - 2) - (7x - 5)).dx`

= `int (sqrt(7x - 2) + sqrt(7x - 5)).dx`

= `int(7x - 2)^(1/2) .dx + int(7x - 5)^(1/2).dx`

= `((7x - 2)^(3/2))/(3/2) xx (1)/(7) + ((7x - 5)^(3/2))/(3/2) xx (1)/(7) + c`

= `(2)/(21)(7x - 2)^(3/2) + (2)/(21)(7x - 5)^(3/2) + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.1 [पृष्ठ १०२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.1 | Q 3.1 | पृष्ठ १०२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

sec2(7 – 4x)


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Integrate the functions:

`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int sin 4x cos 3x dx`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x : sin5x.cos8x


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: `int 1/(sqrt("x") + "x")` dx


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int (cos2x)/(sin^2x)  "d"x`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int dx/(1 + e^-x)` = ______


`int (cos x)/(1 - sin x) "dx" =` ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


`int 1/(sinx.cos^2x)dx` = ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2 + 4x-5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×