हिंदी

Evaluate the following : ∫2+x2-x.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`

योग

उत्तर

Let I = `int sqrt((2 + x)/(2 - x)).dx`

= `int sqrt((2 + x)/(2 - x) xx (2 + x)/(2 + x)).dx`

= `int (2 + x)/sqrt(4 - x^2).dx`

= `int (2)/sqrt(4 - x^2).dx + int x/sqrt(4 - x^2).dx`

= `2 int (1)/sqrt(2^2 - x^2).dx + (1)/(2) int (2x)/sqrt(4 - x^2).dx`

= I1 + I2                        ...(Let)

I1 = `2 int (1)/sqrt(2^2 - x^2).dx`

= `2 sin^-1 (x/2) + c_1`

In I2, put 4 – x2 = t
∴ – 2x dx =  dt
∴  2x dx = – dt

I2 = `-(1)/(2) int t^(-1/2) dt`

= `-(1)/(2).t^(1/2)/((1/2)) + c_2`

= `- sqrt(4 - x^2) + c_2`

I = `2 sin^-1 (x/2) - sqrt(4 - x^2) + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (B) | Q 1.08 | पृष्ठ १२३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`cos sqrt(x)/sqrtx`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


`int sqrt(1 + "x"^2) "dx"` =


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate `int (5"x" + 1)^(4/9)` dx


`int x^2/sqrt(1 - x^6)` dx = ________________


`int (log x)/(log ex)^2` dx = _________


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


Evaluate `int(3x^2 - 5)^2  "d"x`


`int dx/(1 + e^-x)` = ______


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int (f^'(x))/(f(x))dx` = ______ + c.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate `int(1+ x + x^2/(2!)) dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


`int "cosec"^4x  dx` = ______.


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


`int x^2/sqrt(1 - x^6)dx` = ______.


Evaluate the following.

`int x^3 e^(x^2) dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×