Advertisements
Advertisements
प्रश्न
Evaluate `int(3x^2 - 5)^2 "d"x`
उत्तर
Let I = `int(3x^2 - 5)^2 "d"x`
= `int (9x^4 - 30x^2 + 25) "d"x`
= `9intx^4"d"x - 30int x^2"d"x + 25int"d"x`
= `9((x^5)/5) - 30((x^3)/3) + 25x + "c"`
∴ I = `9/5 x^5 - 10x^3 + 25x + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate: `int log ("x"^2 + "x")` dx
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int cos^7 x "d"x`
`int x^3"e"^(x^2) "d"x`
`int ("d"x)/(x(x^4 + 1))` = ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate `int 1/(x(x-1)) dx`