हिंदी

Integrate the following w.r.t. x : 3x3-2x+5xx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`

योग

उत्तर

`int(3x^3 - 2x + 5)/(xsqrt(x))dx`

= `intx^((-3)/(2))(3x^3 - 2x + 5)dx`

= `int(3x^(3/2) - 2x^(-1/2) + 5x^(-3/2))dx`

= `3intx^(3/2)dx - 2intx^(-1/2) dx + 5int x^(-3/2)dx`

= `3(x^(3/2 + 1)/(3/2 + 1)) - 2(x^(1/2 + 1)/(-1/2 + 1)) + 5(x^(-3/2 + 1)/(-3/2 + 1)) + c`

= `(6)/(5)x^2sqrt(x) - 4sqrt(x) - (10)/sqrt(x) + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.1 [पृष्ठ १०२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.1 | Q 1.5 | पृष्ठ १०२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`xsqrt(1+ 2x^2)`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

`(1+ log x)^2/x`


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int \log_e x\ dx\].

 


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

Integrate the following w.r.t. x : x3 + x2 – x + 1


Evaluate the following integrals : `int sin x/cos^2x dx`


Evaluate the following integrals : `int sin 4x cos 3x dx`


Evaluate the following integrals : `int cos^2x.dx`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x : sin5x.cos8x


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int 1/("x" ("x" - 1))` dx


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


Evaluate: `int "x" * "e"^"2x"` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int(log(logx))/x  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


`int x^3"e"^(x^2) "d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


The value of `intsinx/(sinx - cosx)dx` equals ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×