Advertisements
Advertisements
प्रश्न
Integrate the following w.r.t. x : x3 + x2 – x + 1
उत्तर
`int(x^3 + x^2 – x + 1)dx = int x3 dx + int x^2 dx - int x dx + int 1 dx`
= `x^4/(4) + x^3/(3) - x^2/(2) + x + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`(1+ log x)^2/x`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : tan2x dx
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int (sin4x)/(cos 2x) "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int cot^2x "d"x`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int sin^-1 x`dx = ?
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate `int1/(x(x - 1))dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`int(cos 2x)/sinx dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`intsqrt(sec x/2 - 1)dx`