Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
उत्तर
Let I = `int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Put, Numerator = A(Denominator) + B[`d/dx`(Denominator)]
Let 3ex + 4 = A(2ex - 8) + B `"d"/"dx"`(2ex - 8)
= 2 Aex - 8A + B(2ex )
∴ 3ex + 4 = (2A + 2B)ex - 8A
Comparing the coefficients of ex and constant term on both sides, we get
2A + 2B = 3 and - 8A = 4
Solving these equations, we get
A = `- 1/2` and B = 2
∴ I = `int (- 1/2 (2"e"^"x" - 8) + 2(2"e"^"x"))/(2"e"^"x" - 8)`dx
`= - 1/2 int "dx" + 2 int ("2e"^"x")/(2"e"^"x" - 8)` dx
∴ I = `- 1/2"x" + 2log |2"e"^"x" - 8|` + c ...`[int ("f" '("x"))/("f" ("x")) "dx" = log |f ("x")| + "c"]`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Evaluate: `int 1/(sqrt("x") + "x")` dx
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
`int "cosec"^4x dx` = ______.
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`