Advertisements
Advertisements
प्रश्न
Evaluate: `int 1/(sqrt("x") + "x")` dx
उत्तर
Let I = `int 1/(sqrt("x") + "x")` dx
`= int 1/(sqrt"x" (1 + sqrt"x"))` dx
Put `1 + sqrt"x"` = t
∴ `1/(2sqrt"x") "dx"` = dt
∴ `1/sqrt"x" "dx"` = 2 dt
∴ I = `int (2 * "dt")/"t"`
`= 2 int 1/"t"` dt
= 2 log |t| + c
∴ I = 2 log `|1 + sqrt"x"|` + c
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`1/(1 - tan x)`
Write a value of
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int (cos x)/(1 - sin x) "dx" =` ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`