Advertisements
Advertisements
प्रश्न
Integrate the functions:
`1/(1 - tan x)`
उत्तर
Let `I = int 1/ (1 - tan x)dx = int 1/ (1 - sin x/ cos x) dx`
`= int cos x/ (cos x - sin x) dx = 1/2 int (2 cos x)/ (cos x - sin x) dx`
`1/2 int ((cos x - sin x) - (-sin x - cos x))/(cos x - sin x)`
`1/2 int 1 dx - 1/2 int (-sin x - cos x)/ (cos x - sin x) dx`
`x/2 - 1/2 int (-sin x - cos x)/ (cos x - sin x) dx + C_1`
`I = x/2 - 1/2 I_1 + C_1` ....(i)
Where, `I_1 = int (-sinx - cos x)/(cos x - sin x) dx`
Put cos x - sin x = t
⇒ (-sin x - cos x) dx = dt
`I_1 = int dt/t = log |t| + C_2`
= log | cos x - sin x| + C2 ...(ii)
From (i) and (ii), we get
⇒ `I = x/2 - 1/2 log |cos x - sin x| + C`
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of
Write a value of
Write a value of
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t. x : tan5x
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate `int (5"x" + 1)^(4/9)` dx
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int x/(x + 2) "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int 1/(x(x-1))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int(1+x+x^2/(2!))dx`