हिंदी

Evaluate the following integrals : ∫3x+4x2+6x+5.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`

योग

उत्तर

Let I = `int (3x + 4)/(x^2 + 6x + 5).dx`

Let 3x + 4 = `"A"[d/dx(x^2 + 6x + 5)] + "B"`

= A(2x + 6) + B
∴ 3x + 4 = 2Ax + (6A + B)
Comparing the coefficient of x and constant on both sides, we get
2A = 3 and 6A + B = 4

∴ `"A" = (3)/(2) and 6(3/2) + "B"` = 4

∴ B = – 5

∴ 3x + 4 = `(3)/(2)(2x + 6) - 5`

∴ I = `int (3/2(2x + 6) - 5)/(x^2 + 6x + 5).dx`

= `(3)/(2) int (2x + 6)/(x^2 + 6x + 5).dx - 5 int (1)/(x^2 + 6x + 5).dx`

= `(3)/(2)"I"_1 - 5"I"_2`

I1 is of the type `int (f'(x))/f(x).dx = log|f(x)| + c`

∴ `"I"_1 = log|x^2 + 6x + 5| + c_1`

I2 = `int (1)/(x^2 + 6x + 5).dx`

= `int (1)/((x^2 + 6x + 9) - 4).dx`

= `int (1)/((x + 3)^2 - 2^2).dx`

= `(1)/(2 xx 2)log|(x + 3 - 2)/(x + 3 + 2)| + c_2`

= `(1)/(4)log|(x + 1)/(x + 5)| + c_2`

∴ I = `(3)/(2)log|x^2 + 6x+  5| - (5)/(4)log|(x + 1)/(x + 5)| + c`, where c = c + c2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (C) [पृष्ठ १२८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (C) | Q 1.1 | पृष्ठ १२८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

cot x log sin x


`int (dx)/(sin^2 x cos^2 x)` equals:


Evaluate: `int 1/(x(x-1)) dx`


Solve: dy/dx = cos(x + y)


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Integrate the following w.r.t. x : x3 + x2 – x + 1


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate `int "x - 1"/sqrt("x + 4")` dx


Evaluate: `int "x" * "e"^"2x"` dx


Evaluate: `int log ("x"^2 + "x")` dx


Evaluate: `int "e"^sqrt"x"` dx


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


`int dx/(1 + e^-x)` = ______


`int(5x + 2)/(3x - 4) dx` = ______


`int (cos x)/(1 - sin x) "dx" =` ______.


`int ("d"x)/(x(x^4 + 1))` = ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


`int secx/(secx - tanx)dx` equals ______.


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2 + 4x-5)dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×